
Z-Arm SDK instruction

I C#

Operation Environment: vs2010 runtime libraries, net framework 4.0 or above installed

Development Environment: vs2010 or above installed

1、Preparation

1， Set a new C# program, copy the appropriate libraries to the relevant file, included

ClassLibrary_ControlBean.dll，share.dll，server.exe，small_scara_interface.dll, and copy

the 32bit application to bin\debug, the 64bit to bin\x64\Debug.

2， Add ClassLibrary_ControlBean.dll to references with the program.

Add using TcpserverExDll；using ControlBeanExDll to the main program.

3， First, call the TcpserverEx.net_port_initial() to initialize the network.

4， Call TcpserverEx.card_number_connect(int card_number) to check the equipment

connected or not.

5， Call ControlBeanEx robot= TcpserverEx.get_robot(int card_number) to select the Z-arm.

6， Call robot.initial(int generation,float z_travel) to initialize the Z-Arm.

7， Call robot. set_arm_length(float l1,float l2) to set the first joint and second joint with

Z-Arm, the default is l1=200,l2=200；

8， After initialization, call robot.unlock_position() to unlock Z-Arm.

9， Z-Arm could be controlled with other control libraries when it was unlock.

2、Libraries instruction

1）TcpserverEx Type：

Member function：

No. Function declaration Incoming Parameter Return Value

1 static void net_port_initial()

Explain: initialize the server

2

 static int card_number_connect(int

card_number);

Explain: Check the Z-Arm connected or

not

1)card_number (The number of

Z-Arm, the fourth bit of the IP

address)

=0 disconnected

=1 connected

=2 incoming parameter error

=101 incoming parameter NAN

3

 static ControlBeanEx get_robot(int

card_number);

Explain: Select the Z-Arm with number

1)card_number (The number of

Z-Arm, the fourth bit of the IP

address)

Callback from the selected

Z-Arm

4

static void close_tcpserver();

Explain: close the tcpserver

2）ControlBeanEx Type

Member function：

 float x;//Set the coordinate with X axes of Z-Arm（mm）

 float y; // Set the coordinate with Y axes of Z-Arm (mm)

 float z; // Set the coordinate with Z axes of Z-Arm (mm)

 float angle1; // Set the coordinate witeh first joint of Z-Arm(deg)

 float angle2; // Set the coordinate with second joint of Z-Arm (deg)

 float rotation;// // Set the coordinate with fourth joint (deg)

 bool communicate_success;//state of host computer and Z-Arm，true (connected)，false(disconnected)

 bool initial_finish;//state of initialization，true(initialized)，false(not initialized)

 bool move_flag;//state of Z-Arm，true(running)，false(stop)

 bool servo_off_flag;//state of Z-Arm，true(servo on)，false，(servo off)

-- The above variants should be update after calling get_scara_param()

 bool isReach_after_judge;//

-- The above variants should call judge_position_gesture() and get callback with true before update.

 float angle1_after_judge;// With judge_position_gesture() libraries, x and y are the relative coordinates

of first joint.

 float angle2_after_judge; // With judge_position_gesture() libraries, x and y are the relative coordinates

of second joint.

-- The above variants should call judge_position_gesture() and angle2_after_judge get callback with

true before update.

 int efg_type;

 float efg_distance;

-- The above variants should call get_efg_state() and get callback with 1 before update.

Function libraries：

No. Function declaration Incoming Parameter Return Value

1

int initial(

int generation,

float z_travel)

Initial parameters corresponding to the model

Default J1 joint arm length is 200mm

Default J2 joint arm length is 200mm.

1) int generation.

=1 Z-Arm low

configuration

=2 Z-Arm high

configuration

2) float z_travel

Set the up and down

stroke to be 210 or

310 according to the

actual model, and you

need to pass positive

value;

=0 communication has not yet

been established,this initialization

is unsuccessful;

=1 initializing;

=2 generation parameter error;

=3 encoder value error;

=11 controlled by the mobile

terminal, this initialization is not

successful

=12 z_travel transmission error

2

void get_scara_param(

float *x,float *y,float*z,

float *angle1,

float *angle2,

float *rotation,

bool *communicate_success,

bool *initial_finish,

bool *servo_off_flag,

bool *move_flag)

1) float *x, coordinate

value of x (mm)

2) float *y, coordinate

value of y (mm)

3) float *z, coordinate

value of z (mm)

4) float *angle1,

angle value of joint 1

(deg)

5) float *angle2,

angle value of joint 2

No Return Value

(deg)

6) float * rotation,

angle value of joint 4

(deg)

7) bool

*communicate_succe

ss,

=0 communication

has not been

connected

=1 communication

has been established

8) bool

*initial_finish,

=0 initialization

successful

=1 initialization

unsuccessful

9) bool

*servo_off_flag,

=0 servo not closed

=1 servo closed

10) bool *move_flag,

=0 the robot arm is in

standby state

=1 the robot arm is in

motion state

3

void set_arm_length(

float l1,

float l2)

Set J1 J2 joint arm length

float l1

J1 joint length,

reserved parameters,

you must introduce J1

joint length, introduce

160 or 200 generally

for those with J4

rotation joint, and set

according to the

actual situation for

those with no J4

rotation joint

No Return Value

4

int unlock_position(

int n);

Unlock function, before you control the movement of the

robotic arm, you must unlock first

1) int n

The fourth bit of the

robotic arm’s IP

address

=0 not connected

=1 connected

=2 parameter n error

5 bool is_connected(); =true connected

Explain: check the Z-Arm connected or not =false disconnected

6

 int get_card_num();

Explain: Get the number of Z-Arm, and get invoked after

initialization

 Callback the number of Z-Arm

7

 int get_joint_state(int joint_num);

Explain: Get state of Z-Arm, available after initialization

1)joint_num

Joint number

=0 reset the joint and need to be

initialized again

=1 joint could move regular

=2 incoming parameter error

=3 joint is not initialized

=4 fail to get joint state（Only new

version support）

=5 in collision;

=6 Drag-teaching mode;

8

 bool set_drag_teach(bool state);

Explain: Only Z-Arm support, drag-teaching mode on, the

other joint could be drag except joint 3, available after

initialization

1)state

True on

False off

=true setting success

=false setting fail

9

 bool get_drag_teach();

Explain: Only Z-Arm support, to check drag-teaching mode

is on or off, available after initialization

=false drag-teaching mode off

=true drag-teaching mode on

10

 bool set_cooperation_fun_state(bool state);

Explain: Only Z-Arm support, to check collision protect

mode is on or off, available after initialization

1)state

true collision

protect mode on

false collision

protect mode off

=true setting success

=false setting fail

11
bool get_cooperation_fun_state()

Query whether the coordination function is on
No input parameter

=false off

=true on

12

bool is_collision()

Query whether the coordination function is triggered

(collided)

No input parameter
=false no

=true yes

Movement libraries

No. Function declaration Incoming Parameter Return Value

1

int set_position_move(

float goal_x,

float goal_y,

float goal_z,

float rotation,

float speed,

float acceleration,

int interpolation,

intmove_mode);

Move to the target point from the current

position attitude

float goal_x

X coordinate value of the target point, unit is

mm

float goal_y

Y coordinate value of the target point, unit is

mm

float goal_z

Z coordinate value of the target point, unit is

mm

float goal rotation z

J4 angle value of the target point, unit is deg

float speed

running speed mm/s

float acceleration

acceleration value in T shape interpolation,

valid only when interpolation=2;

int interpolation

1 is s curve interpolation, and 2 is T curve

interpolation

intmove_mode

=1 is MOVEJ

The trajectory from the current position to the

target position is a straight line (if it can

arrive)

=2 is MOVEL

Each joint moves from the current position to

the target position, and the intermediate

=0 the robotic arm is

running other instructions,

this command is invalid

=1 this command goes into

effect, and the robot arm

begins to move

=2 setting speed is less than

or equal to zero

=3 not initialized yet

=4 in the MOVEL

movement, the intermediate

process points go out of

bounds and it cannot arrive,

and the robotic arm will

stop moving

=6 robotic arm servo not

opened

=7 in the MOVEL

movement, any

intermediate process point

cannot arrive by the robotic

arm's current attitude

(attitude), and the robotic

arm will stop moving

=8 setting acceleration is

less than or equal to zero

=9 interpolation mode

movement trajectory is generally not a

straight line

parameter error

=10 move_mode move

mode error

=11 mobile terminal is

controlling

=101 Incoming parameter

NAN

=102 In collision, could not

move

=103 joint was reset and

need to be initialized again

2

int set_angle_move(

float angle1,

float angle2,

float z,

float rotation,

float speed);

float angle1

The absolute angle of the target point joint 1,

unit is deg

float angle2

The absolute angle of the target point joint 2,

unit is deg

float z

The absolute coordinate of target point joint

3, unit is mm

float rotation

The absolute coordinate of target point joint

4, unit is deg

float speed

Running speed unit

Judge the difference of the joint angles

between the current position and the target

point, divided by speed at the same time, to

get the movement time of each joint, and take

the longer time as the final movement time,

and then inversely calculate the actual

running speed of each joint

=0 the robotic arm is

running other instructions,

this command is invalid

=1 this command goes into

effect, and the robotic arm

begins to move

=2 setting speed is less than

or equal to zero

=3 not initialized yet

=4 the position point goes

beyond bounds

=6 the robotic arm servo not

opened

=11 mobile terminal is

controlling

=101 Incoming parameter

NAN

=102 In collision, could not

move

=103 joint was reset and

need to be initialized again

3

int xyz_move(

int direction,

float distance,

float speed)

Motion of x, y, z single axis

int direction

=1 x axis direction motion

=2 y axis direction motion

=3 z axis direction motion

float distance

Offset in the direction of direction relative to

=0 the robotic arm is

running other instructions,

this command is invalid

=1 this command goes into

effect, and the robotic arm

begins to move

the current position

float speed

Unit is mm/s

=2 setting speed is less than

or equal to zero

=3 not initialized yet

=4 process point cannot

reach

=5 direction parameter error

=6 robotic arm servo not

opened

=7 any intermediate process

point cannot arrive by the

robotic arm's current

attitude (attitude), and the

robotic arm will stop

moving

=11 mobile terminal is

controlling

=101 Incoming parameter

NAN

=102 In collision, could not

move

=103 joint was reset and

need to be initialized again

4

 int single_joint_move(

int axis,

float distance,

 float speed);

1)axis

Input 1 to 4, matching with joint 1 to joint 4

2)distance

Moving distance from the present position，

When axis=3, unit of distance is mm, when

axis=1 or 2 or 3, unit of distance is deg

3)speed

=0 Z-Arm is in state of

other implementation, the

present implementation is

unavailable.

=1 present implementation

is available, Z-Arm begin

moving

Moving speed，

When axis=3, unit of speed is mm/s

When axis=1 or 2 or 4, unit of speed is deg/s

=2 set the speed less or

equal to 0

=3 Not initialized yet

=4 Could not reach the

position

=5 parameter error of the

number of output axis

=6 Z-Arm servo off

=11 Controlling by APP

=101 Incoming parameter

NAN

=102 In collision, could not

move

=103 joint was reset and

need to be initialized again

5

int trail_move(

intpoint_number,

float *x,

float *y,

float *z,

float *r,

float speed);

Represent four degrees of freedom

x(mm),y(mm),z(mm),r(deg) of all the point

coordinates in a section of trajectory with

four float arrays, and indicate the total

number of points and running speed,

introduce into the trail_move function;

Note: the linear distance between two

intpoint_number

Number of points to be executed

float *x

The first address of x coordinate array, and

the unit of data in the array is mm

float *y

The first address of y coordinate array, and

the unit of data in the array is mm

float *z

The first address of z coordinate array, and

the unit of data in the array is mm

float *r

The first address of r coordinate array, and

the unit of data in the array is deg

=0 the robotic arm is

running other instructions,

this command is invalid

=1 this command goes into

effect, and the robotic arm

begins to move

=2 setting speed is less than

or equal to zero

=3 not initialized yet

=4 the first point in the

trajectory goes beyond

bounds

=6 the robotic arm servo not

opened

adjacent points in the trajectory should be

equal to 1mm

float speed

Running speed

=11 mobile terminal in

controlling

=101 Incoming parameter

NAN

=102 In collision, could not

move

=103 joint was reset and

need to be initialized again

6

int change_attitude(

float speed)

Change attitude

float speed

The joint speed (deg/s) when transforming

attitude, and the difference of the joint angles

between the two attitudes will be judged. At

the same time, divided by speed to get the

motion time of each joint, and the longer time

is the final movement time

=0 the robot arm is running

other instructions, this

command is invalid

=1 this command goes into

effect, and the robot arm

begins to move

=2 the incoming speed is

less than or equal to 0

=3 not initialized yet

=4 can't reach by the other

attitude

=6 servo not opened

=11 mobile terminal is

controlling

=101 Incoming parameter

NAN

=102 In collision, could not

move

=103 joint was reset and

need to be initialized again

7 void stop_move() No Incoming Parameter Cannot Return Value

Stop the robot arm and stop all movement

8

void servo_off()

Turn off the servo

No Incoming Parameter Cannot Return Value

9

bool servo_on()

Trun on the servo

No Incoming Parameter

=0 not initialized or

initialization not completed

=1 settings successful

10

 bool is_robot_goto_target();

Explain: Check the four incoming

parameters whether the arm arrived the

position or not

=true arrived

=false not arrived

11

 void

set_allow_offset_at_target_position(float

x_distance, float y_distance, float

z_distance, float r_distance);

1)x_distance

X axes coordinate deviation

2)y_distance

Y axes coordinate deviation

3)z_distance

Y axes coordinate deviation

4)r_distance

R axes coordinate deviation

12

 void set_catch_or_release_accuracy(

float accuracy);

Explain: The allowed error to get the

position when the Z-Arm moving with Y

axes.

1)accuracy allowed error

13

bool judge_in_range(

float x,

float y,

float z,

float ratation)

Judge whether the output position point

float x

X axis coordinate value mm

float y

Y axis coordinate value mm

float z

Z axis coordinate value mm

=false it cannot arrive

=true it can arrive

can arrive float rotation

J4 joint angle deg

14

 bool judge_position_gesture(

float x, float y);

Explain: Callback bool

judge_position_gesture(float x, float y)

before callback set_position_move(), if it

could callback true that means available,

check member variants

isReach_after_judge, if callback true,

position could be reached, if not, it could

not arrived.

1)x

X axes coordinate of position

2)y

Y axes coordinate of position

=ture success

=false fail, Z-Arm is

running.

15

 int joint_home(

int joint_num);

Explain: Reset the Z-Arm when it was

connected but haven’t been initialized.

After callback, Z-Arm will be back to not

initialized.

1)joint_num

Joint number

=0 connected

=1 success

=2 incoming parameter

error

=3 Z-Arm is initializing.

IO libraries

No. Function declaration Incoming Parameter Return Value

1

bool set_digital_out(

intio_number,

bool value)

Set io output

intio_number

Output io port number, value range

is 0-2 containing 0 and 2, which can

be 0-2 currently; others are reserved

bool value

Set the output value of io_number

=0 io_number parameter error

=1 settings successful

=3 not initialized yet

=0 corresponds to the disconnect

state of the two pins of io

=1 corresponds to the conducting

state of the two pins of io

The connection of IO port output

pin is shown in Appendix 1.2

 2

int get_digital_out(int io_out_num);

Obtain the state of io output interface

1) int io_out_number

the serial number of io interfaces.

=-1 io_out_num parameter

error

=0 output state of io interface

is off

=1 output state of io interface

is on

=3 not initialized yet

3

int get_digital_in(

intio_in_number)

Get the state value of the output IO

int io_in_number

Input the io port number 0-2,

including 0 and 2;

Specific pin connection mode is

shown in Appendix 1.3;

=0 24 v signal input

=1 not connected, or no signal

input

=2 parameter io_in_number

error

=3 not initialized yet

4

int set_efg_state(int type, float distance)

Aims to control efg-20 motor-driven

gripper(effective stroke is 20mm, which is

unadjustable) and efg-8 motor-driven

gripper(effective stroke is 8mm, which is

unadjustable)

Notice: every time after the mechanical arm is

powered up, the controlling type can’t be changed.

1） int type

Type of motor-driven

grippers: 20 for efg-20 and 8

for efg-8

2） float distance

If type=20, distance for

gripping position, data range

(0,20), accurate to 0.1

If type=8, distance=0, stretch,

=1 Controls parameter

changed

=0 Type parameter error

=1 Set ok

=3 not initialized yet

Distance=1, clamp.

5

int get_efg_state(int *type, float *distance)

Acquire the controlling type and the actual postion

of the motor-driven gripper

1） int *type

Shift to int pointer type.

Assigning after function

reference.

type=0 controlling type

unselected

type=8 controlling type is

efg-8

type=20 controlling type is

efg-20

2) Shift to float pointer type.

Assigning after function

reference.

=1 Function reference ends

=3 not initialized yet

II CPP version。

For now, only support the Windows x86 or x 64 application developed by CPP.

1、Preparation

1 New CPP program, copy hitbot_interface.h，ControlBeanEx.h，hitbot_interface.lib to

the source program files, and INCLUDE the first 2 files with the program.

2 Copy the libraries of relative version to the debug files, included hitbot_interface.dll，

share.dll，server.exe，small_scara_interface.dll.

3 Callback net_port_initial() to initialized the network.

4 Callback card_number_connect(int card_number) to check whether the equipment

connected or not.

5 Callback ControlBeanEx* robot=get_robot(int card_number) to select the Z-Arm.

6 Callback robot->initial(int generation,float z_travel) to initialized the Z-Arm.

7 Callback robot->set_arm_length(float l1,float l2) to set joint 1 and joint 2 with

Z-Arm, the default is l1=200,l2=200.

8 After initialization, callback robot->unlock_position() to unlock the Z-Arm

9 Z-Arm could be controlled with other libraries after unlock.

2、Libraries instruction

1）Export libraries of hitbot_interface with dynamic-link library：

Function libraries：

No. Function declaration Incoming Parameter Return Value

1

extern "C" __declspec(dllexport)

void net_port_initial();

Explain: initialize the server

2

extern "C" __declspec(dllexport) int

card_number_connect(int num);

Explain: Check the Z-Arm connected or

not

1)card_number (The number of

Z-Arm, the fourth bit of the IP

address)

=0 disconnected

=1 connected

=2 incoming parameter error

=101 incoming parameter NAN

3

extern "C" __declspec(dllexport)

ControlBeanEx * get_robot(int

card_number);

Explain: get the Z-Arm pointer

1)card_number (The number of

Z-Arm, the fourth bit of the IP

address)

Callback to the Z-Arm number

4

extern "C" __declspec(dllexport)

void close_tcpserver();

Explain: close the tcpserver

2）ControlBeanEx Type

Member function：

 float x;//Set the coordinate with X axes of Z-Arm（mm）

 float y; // Set the coordinate with Y axes of Z-Arm (mm)

 float z; // Set the coordinate with Z axes of Z-Arm (mm)

 float angle1; // Set the coordinate witeh first joint of Z-Arm(deg)

 float angle2; // Set the coordinate with second joint of Z-Arm (deg)

https://cn.linguee.com/%E8%8B%B1%E8%AF%AD-%E4%B8%AD%E6%96%87/%E7%BF%BB%E8%AD%AF/dynamic-link+library.html

 float rotation;// // Set the coordinate with fourth joint (deg)

 bool communicate_success;//state of host computer and Z-Arm ， true (connected) ，

false(disconnected)

 bool initial_finish;//state of initialization，true(initialized)，false(not initialized)

 bool move_flag;//state of Z-Arm，true(running)，false(stop)

 bool servo_off_flag;//state of Z-Arm，true(servo on)，false，(servo off)

-- The above variants should be update after calling get_scara_param()

 bool isReach_after_judge;//

-- The above variants should call judge_position_gesture() and get callback with true before

update.

 float angle1_after_judge;// With judge_position_gesture() libraries, x and y are the relative

coordinates of first joint.

 float angle2_after_judge; // With judge_position_gesture() libraries, x and y are the relative

coordinates of second joint.

-- The above variants should call judge_position_gesture() and angle2_after_judge get callback

with true before update.

 int efg_type;

 float efg_distance;

-- The above variants should call get_efg_state() and get callback with 1 before update.

Functional member libraries：

No. Function declaration Incoming Parameter Return Value

1

int initial(

int generation,

float z_travel)

Initial parameters corresponding to the model

Default J1 joint arm length is 200mm

1) int generation.

=1 Z-Arm low

configuration

=2 Z-Arm high

configuration

=0 communication has not yet

been established,this initialization

is unsuccessful;

=1 initializing;

=2 generation parameter error;

Default J2 joint arm length is 200mm. 2) float z_travel

Set the up and down

stroke to be 210 or

310 according to the

actual model, and you

need to pass positive

value;

=3 encoder value error;

=11 controlled by the mobile

terminal, this initialization is not

successful

=12 z_travel transmission error

2

void get_scara_param(

float *x,float *y,float*z,

float *angle1,

float *angle2,

float *rotation,

bool *communicate_success,

bool *initial_finish,

bool *servo_off_flag,

bool *move_flag)

1) float *x, coordinate

value of x (mm)

2) float *y, coordinate

value of y (mm)

3) float *z, coordinate

value of z (mm)

4) float *angle1,

angle value of joint 1

(deg)

5) float *angle2,

angle value of joint 2

(deg)

6) float * rotation,

angle value of joint 4

(deg)

7) bool

*communicate_succe

ss,

=0 communication

has not been

connected

=1 communication

has been established

8) bool

*initial_finish,

=0 initialization

successful

=1 initialization

unsuccessful

9) bool

*servo_off_flag,

=0 servo not closed

=1 servo closed

10) bool *move_flag,

=0 the robot arm is in

standby state

=1 the robot arm is in

motion state

No Return Value

3

void set_arm_length(

float l1,

float l2)

float l1

J1 joint length,

reserved parameters,

No Return Value

Set J1 J2 joint arm length you must introduce

200,

float l2

J1 joint length,

introduce 200

generally for those

with J4 rotation joint,

and set according to

the actual situation

for those with no J4

rotation joint

4

int unlock_position(

int n);

Unlock function, before you control the movement of the

robotic arm, you must unlock first

1) int n

The fourth bit of the

robotic arm’s IP

address

=0 not connected

=1 connected

=2 parameter n error

5

 bool is_connected();

Explain: check the Z-Arm connected or not

=true connected

=false disconnected

6

 int get_card_num();

Explain: Get the number of Z-Arm, and get invoked after

initialization

 Callback the number of Z-Ar

7

 int get_joint_state(int joint_num);

Explain: Get state of Z-Arm, available after initialization

1)joint_num

Joint number

=0 reset the joint and need to be

initialized again

=1 joint could move regular

=2 incoming parameter error

=3 joint is not initialized

=4 fail to get joint state（Only new

version support）

=5 in collision;

=6 Drag-teaching mode;

8

 bool set_drag_teach(bool state);

Explain: Only Z-Arm support, drag-teaching mode on, the

1)state

True on

=true setting success

=false setting fail

other joint could be drag except joint 3, available after

initialization

False off

9

 bool get_drag_teach();

Explain: Only Z-Arm support, to check drag-teaching mode

is on or off, available after initialization

=false drag-teaching mode off

=true drag-teaching mode on

10

 bool set_cooperation_fun_state(bool state);

Explain: Only Z-Arm support, to check collision protect

mode is on or off, available after initialization

1)state

true collision

protect mode on

false collision

protect mode off

=true setting success

=false setting fail

11
bool get_cooperation_fun_state()

Query whether the coordination function is on
No input parameter

=false off

=true on

12

bool is_collision()

Query whether the coordination function is triggered

(collided)

No input parameter
=false no

=true yes

Movement libraries

No. Function declaration Incoming Parameter Return Value

1

int set_position_move(

float goal_x,

float goal_y,

float goal_z,

float rotation,

float speed,

float acceleration,

int interpolation,

intmove_mode);

Move to the target point from the current

position attitude

float goal_x

X coordinate value of the target point, unit is

mm

float goal_y

Y coordinate value of the target point, unit is

mm

float goal_z

Z coordinate value of the target point, unit is

mm

float goal rotation z

J4 angle value of the target point, unit is deg

float speed

running speed mm/s

=0 the robotic arm is

running other instructions,

this command is invalid

=1 this command goes into

effect, and the robot arm

begins to move

=2 setting speed is less than

or equal to zero

=3 not initialized yet

=4 in the MOVEL

movement, the intermediate

process points go out of

bounds and it cannot arrive,

float acceleration

acceleration value in T shape interpolation,

valid only when interpolation=2;

int interpolation

1 is s curve interpolation, and 2 is T curve

interpolation

intmove_mode

=1 is MOVEJ

The trajectory from the current position to the

target position is a straight line (if it can

arrive)

=2 is MOVEL

Each joint moves from the current position to

the target position, and the intermediate

movement trajectory is generally not a

straight line

and the robotic arm will

stop moving

=6 robotic arm servo not

opened

=7 in the MOVEL

movement, any

intermediate process point

cannot arrive by the robotic

arm's current attitude

(attitude), and the robotic

arm will stop moving

=8 setting acceleration is

less than or equal to zero

=9 interpolation mode

parameter error

=10 move_mode move

mode error

=11 mobile terminal is

controlling

2

int set_angle_move(

float angle1,

float angle2,

float z,

float rotation,

float speed);

float angle1

The absolute angle of the target point joint 1,

unit is deg

float angle2

The absolute angle of the target point joint 2,

unit is deg

float z

The absolute coordinate of target point joint

3, unit is mm

float rotation

The absolute coordinate of target point joint

4, unit is deg

float speed

Running speed unit

Judge the difference of the joint angles

between the current position and the target

point, divided by speed at the same time, to

get the movement time of each joint, and take

the longer time as the final movement time,

and then inversely calculate the actual

=0 the robotic arm is

running other instructions,

this command is invalid

=1 this command goes into

effect, and the robotic arm

begins to move

=2 setting speed is less than

or equal to zero

=3 not initialized yet

=4 the position point goes

beyond bounds

=6 the robotic arm servo not

opened

=11 mobile terminal is

controlling

running speed of each joint

3

int xyz_move(

int direction,

float distance,

float speed)

Motion of x, y, z single axis

int direction

=1 x axis direction motion

=2 y axis direction motion

=3 z axis direction motion

float distance

Offset in the direction of direction relative to

the current position

float speed

Unit is mm/s

=0 the robotic arm is

running other instructions,

this command is invalid

=1 this command goes into

effect, and the robotic arm

begins to move

=2 setting speed is less than

or equal to zero

=3 not initialized yet

=4 process point cannot

reach

=5 direction parameter error

=6 robotic arm servo not

opened

=7 any intermediate process

point cannot arrive by the

robotic arm's current

attitude (attitude), and the

robotic arm will stop

moving

=11 mobile terminal is

controlling

4

 int single_joint_move(

int axis,

float distance,

 float speed);

1)axis

Input 1 to 4, matching with joint 1 to joint 4

2)distance

Moving distance from the present position，

When axis=3, unit of distance is mm, when

axis=1 or 2 or 3, unit of distance is deg

3)speed

=0 Z-Arm is in state of

other implementation, the

present implementation is

unavailable.

=1 present implementation

is available, Z-Arm begin

moving

Moving speed，

When axis=3, unit of speed is mm/s

When axis=1 or 2 or 4, unit of speed is deg/s

=2 set the speed less or

equal to 0

=3 Not initialized yet

=4 Could not reach the

position

=5 parameter error of the

number of output axis

=6 Z-Arm servo off

=11 Controlling by APP

=101 Incoming parameter

NAN

=102 In collision, could not

move

=103 joint was reset and

need to be initialized again

5

int trail_move(

intpoint_number,

float *x,

float *y,

float *z,

float *r,

float speed);

Represent four degrees of freedom

x(mm),y(mm),z(mm),r(deg) of all the point

coordinates in a section of trajectory with

four float arrays, and indicate the total

number of points and running speed,

introduce into the trail_move function;

Note: the linear distance between two

intpoint_number

Number of points to be executed

float *x

The first address of x coordinate array, and

the unit of data in the array is mm

float *y

The first address of y coordinate array, and

the unit of data in the array is mm

float *z

The first address of z coordinate array, and

the unit of data in the array is mm

float *r

The first address of r coordinate array, and

the unit of data in the array is deg

=0 the robotic arm is

running other instructions,

this command is invalid

=1 this command goes into

effect, and the robotic arm

begins to move

=2 setting speed is less than

or equal to zero

=3 not initialized yet

=4 the first point in the

trajectory goes beyond

bounds

=6 the robotic arm servo not

opened

adjacent points in the trajectory should be

equal to 1mm

float speed

Running speed

=11 mobile terminal in

controlling

6

int change_attitude(

float speed)

Change attitude

float speed

The joint speed (deg/s) when transforming

attitude, and the difference of the joint angles

between the two attitudes will be judged. At

the same time, divided by speed to get the

motion time of each joint, and the longer time

is the final movement time

=0 the robot arm is running

other instructions, this

command is invalid

=1 this command goes into

effect, and the robot arm

begins to move

=2 the incoming speed is

less than or equal to 0

=3 not initialized yet

=4 can't reach by the other

attitude

=6 servo not opened

=11 mobile terminal is

controlling

7

void stop_move()

Stop the robot arm and stop all movement

No Incoming Parameter Cannot Return Value

8

void servo_off()

Turn off the servo

No Incoming Parameter Cannot Return Value

9

bool servo_on()

Trun on the servo

No Incoming Parameter

=0 not initialized or

initialization not completed

=1 settings successful

10

 bool is_robot_goto_target();

Explain: Check the four incoming

parameters whether the arm arrived the

position or not

=true arrived

=false not arrived

11

 void

set_allow_offset_at_target_position(float

1)x_distance

X axes coordinate deviation

x_distance, float y_distance, float

z_distance, float r_distance);

2)y_distance

Y axes coordinate deviation

3)z_distance

Y axes coordinate deviation

4)r_distance

R axes coordinate deviation

12

 void set_catch_or_release_accuracy(

float accuracy);

Explain: The allowed error to get the

position when the Z-Arm moving with Y

axes.

1)accuracy allowed error

13

bool judge_in_range(

float x,

float y,

float z,

float ratation)

Judge whether the output position point

can arrive

float x

X axis coordinate value mm

float y

Y axis coordinate value mm

float z

Z axis coordinate value mm

float rotation

J4 joint angle deg

=0 it cannot arrive

=1 it can arrive

14

 bool judge_position_gesture(

float x, float y);

Explain: Callback bool

judge_position_gesture(float x, float y)

before callback set_position_move(), if it

could callback true that means available,

check member variants

isReach_after_judge, if callback true,

position could be reached, if not, it could

not arrived.

1)x

X axes coordinate of position

2)y

Y axes coordinate of position

=ture success

=false fail, Z-Arm is

running.

15

 int joint_home(

int joint_num);

Explain: Reset the Z-Arm when it was

connected but haven’t been initialized.

After callback, Z-Arm will be back to not

initialized.

1)joint_num

Joint number

=0 connected

=1 success

=2 incoming parameter

error

=3 Z-Arm is initializing.

IO libraries

No. Function declaration Incoming Parameter Return Value

1

bool set_digital_out(

intio_number,

bool value)

Set io output

intio_number

Output io port number, value range

is 0-2 containing 0 and 2, which can

be 0-2 currently; others are reserved

bool value

Set the output value of io_number

=0 corresponds to the disconnect

state of the two pins of io

=1 corresponds to the conducting

state of the two pins of io

The connection of IO port output

pin is shown in Appendix 1.2

=0 io_number parameter error

=1 settings successful

2

int get_digital_out(int io_out_num);

Obtain the state of io output interface

1) int io_out_number

the serial number of io interfaces.

=-1 io_out_num parameter

error

=0 output state of io interface

is off

=1 output state of io interface

is on

3

int get_digital_in(

intio_in_number)

Get the state value of the output IO

int io_in_number

Input the io port number 0-2,

including 0 and 2;

Specific pin connection mode is

shown in Appendix 1.3;

=0 24 v signal input

=1 not connected, or no signal

input

=2 parameter io_in_number

error

4

int set_efg_state(int type, float distance)

Aims to control efg-20 motor-driven

gripper(effective stroke is 20mm, which is

unadjustable) and efg-8 motor-driven

gripper(effective stroke is 8mm, which is

unadjustable)

Notice: every time after the mechanical arm is

powered up, the controlling type can’t be changed.

3） int type

Type of motor-driven

grippers: 20 for efg-20 and 8

for efg-8

4） float distance

If type=20, distance for

gripping position, data range

(0,20), accurate to 0.1

If type=8, distance=0, stretch,

Distance=1, clamp.

=1 Controls parameter

changed

=0 Type parameter error

=1 Set ok

5

 int get_efg_state (int* type, float* distance);

Explain: Get the electric gripper model and

position, after callback, value of type,distance will

be assigned.

Type=0 means gripper could not be identified,

type=8 means EFG-8 electric gripper has been

identified, type=20 means EFG-20 electric gripper

has been identified.

1)type

Int pointer

2)distance

Float pointer

=1 Callback success

=3 Not initialized

III IO interface instruction

Appendice

 1. Interface instruction（old version）：

https://cn.linguee.com/%E8%8B%B1%E8%AF%AD-%E4%B8%AD%E6%96%87/%E7%BF%BB%E8%AD%AF/appendice.html

2. IO output interface instruction（Old version）：

1-2 are I00 output interfaces, 1 for high level, 2 for low level.

3-4 are I00 output interfaces, 3 for high level, 4 for low level.

5-6 are I00 output interfaces, 5 for high level, 6 for low level.

3.IO input interface instruction（Old version）：

1-2 are I00 input interfaces，1 and 2 connecting with signal cable at both ends.

3-4 are I00 input interfaces，3 and 4 connecting with signal cable at both ends.

5-6 are I00 input interfaces，5 and 6 connecting with signal cable at both ends.

4. Base interface instruction（New Version）：

5. Joint 2 interface instruction（new version）：

